Smile
"ถ้าไม่คิดจะเริ่ม ก็เหมือนเดิมทั้งชีวิต" "ไม่มีอะไรยากกว่าความสามารถ ถ้าไม่คิดที่จะเรียนรู้"
เครื่องกำเนิดไฟกระแสตรง และ เครื่องปั่นไปกระสลับ แต่ทั้งสองมีอะไรที่แตกต่างกัน ทั้งระบบารทำงาน ส่วนประกอบของเครื่องปั่นไฟส่วนต่างๆ ที่มีความสำคัญช่วยขับเคลื่อนการทำงานของเครื่องกำเนิดไฟ และเครื่องกำเนิดไฟฟ้าทั้ง 2 แบบ แบบไหนเหมาะับงานประเภทไหน วันนี้จะได้ไขข้อกระจ่างเกี่ยวกับเครื่องกำเนิดไฟทั้งแบบกระแสตรง และเครื่องเนิดไฟฟ้ากกระแสสลับ
โดยทั่วไปแล้ว คนส่วนใหญ่ เรียกก เครื่องกำเนิดไฟฟ้า เป็น เครื่องปั่นไฟ หรือเครื่องกกำเนิดไฟ ที่ให้ความสว่างหรือผลลิตกระแสไฟให้เครื่องมือใช้ไฟฟ้าต่างๆ ที่จำเป็น แต่เครื่องกกำเนิดไฟฟ้ามีความสำคัญยังไงในปัจจุบันเพราะปัจจุบันทั่วไปมีไฟฟ้าที่เพียงพอต่อการใช้งานในระยะเวลาที่ยาวนาน และไม่มีปัญหา แต่สิ่งต่างไอาจเกิดขึ้นได้อย่างคาดไม่ถึง เช่นโรงพยาบาลที่ต้องใช้กระแสไฟฟ้าตลอด 24 ชั่วโมง หรือบางส่วนอาจขาดไฟฟ้าไม่ได้เลย เพื่อรักษาวัคซีนเป็นต้น ไฟฟ้าจึงมีความสำคัญอย่างยิ่ง
หลักการทำงานของเครื่องกำเนิดไฟฟ้านั้น ไม่ว่าจะเป็นเครื่องกำเนิดไฟฟ้ากระแสตรง หรือเครื่องกำเนิดไฟฟ้ากระแสสลับต่างก็มีหลักการทำงานเหมือนกัน คือ การนำขดลวดอาร์เมเจอร์และขดลวดสนามแม่เหล็กเคลื่อนที่ตัดผ่านกัน จึงจะได้พลังงานไฟฟ้าออกมา นั่นแปลว่า จะต้องมีขดลวดชุดหนึ่งอยู่กับที่ และมีขดลวดอีกชุดหนึ่งที่หมุนเคลื่อนที่
โดยปกติแล้วเครื่องกำเนิดไฟฟ้ากระแสตรง จะถูกออกแบบให้กำเนิดไฟฟ้าในลักษณะให้ขดลวดอาร์ เมเจอร์เป็นส่วนที่หมุนส่วนที่อยู่กับที่ คือขดลวดสนามแม่เหล็ก เมื่อพลังงานกลจากต้นกำลังหมุนขับเพลาส่งกำลัง ไปยังแกนขดลวดอาเมเจอร์แรงหมุน ของแกนอาร์เมเจอร์จะมีการเคลื่อนที่
ตัดผ่านสนามแม่เหล็กที่ถูกปล่อยออกมาจากขดลวดแม่เหล็ก แต่เครื่องกำเนิดไฟฟ้ากระแสสลับ จะมีลักษณะการทำงานที่แตกต่างกัน คือ ขดลวดอาร์เมเจอร์จะเป็นส่วนที่อยู่กับที่หรือจะเป็นส่วนที่เคลื่อนที่ก็ได้ และส่วนที่ หมุนเคลื่อนที่ก็คือขดลวดสนามแม่เหล็ก ถึงแม้ว่าลักษณะการทำงานของเครื่องกำเนิดไฟฟ้าทั้ง 2 ชนิดจะมีความแตกต่างกัน แต่มีหลักการเดียวกันในการกำเนิดพลังงานไฟฟ้า
ลักษณะการทำงานของเครื่องกำเนิดไฟฟ้ากระแสตรงนั้น แกนเหล็ก ขดลวดอาร์เมเจอร์จะเป็นส่วนที่เคลื่อนที่ตัดผ่านสนามแม่เหล็ก ขดลวดแม่เหล็กจึงจะเป็นส่วนที่อยู่กับที่ ซึ่งจะยึดติดอยู่กับโครงเครื่อง ประกอบที่สำคัญของเครื่องกำเนิดไฟฟ้ากระแสตรงจะมีอยู่ 4 ส่วนด้วยกัน
อาร์เมเจอร์ (ส่วนที่หมุน หรือโรเตอร์) ส่วนที่ผลิตแรงเคลื่อนไฟฟ้า (แรงดันไฟฟ้า) โดยการหมุน ตัดผ่านกับสนามแม่เหล็ก ซึ่งโครงสร้างของอาร์เมเจอร์จะประกอบด้วยแกนเหล็ก และขดลวด รวมกันเป็นชุดแกนขดลวดอาร์เมเจอร์ หรือโรเตอร์ (Rotor) ของ เครื่องกำเนิดไฟฟ้า
ขั้วแม่เหล็ก (ส่วนที่อยู่กับที่ หรือสเตเตอร์) ส่วนที่สร้างสนามแม่เหล็ก โดยขั้วแม่เหล็กจะเป็นส่วนที่อยู่กับที่และยึดติดกับโครงเครื่องกำเนิดไฟฟ้ากระแสตรง
คอมมิวเตเตอร์ ส่วนที่ทำหน้าที่เปลี่ยนแรงดันไฟฟ้ากระแสสลับใน ขดลวดอาร์เมเจอร์ให้เป็นแรงดันไฟฟ้ากระแสตรง นอกจากนี้คอมมิวเตเตอร์ทำ หน้าที่เรียงกระแสไฟฟ้า โดยคอมมิวเตเตอร์จะผลิตจากแท่งทองแดง ซึ่งแต่ละ จะมีคว้านลักษณะรูปลิ่ม เพื่อสะดวกในการนำมาประกอบเป็นรูปทรงกระบอก แต่จะมีแผ่นไมก้าคั่นกลางไว้ในแต่ละซี่ ทั้งนี้ ความหนาของซีคอมมิวเตเตอร์จะอยู่ กับขนาดกำลังไฟใช้งานของเครื่องกำเนิดไฟฟ้า รวมถึง Voltage ระหว่างซีคอมมิว เตเตอร์ที่อยู่ประชิดกับโครงสร้างภายในของคอมมิวเตเตอร์
แปรงถ่าน สำหรับแปรงถ่านและชุดยึด แปรงถ่าน จะมีหน้าที่ต่อวงจรปิด ลวดอาร์เมเจอร์กับวงจรภายนอก เข้าด้วยกัน โดยแปรงถ่านจะสัมผัส กับผิวหน้าของคอมมิวเตเตอร์อยู่ ตลอด ทั้งนี้ แปรงถ่านจะผลิตจากวัสดุ 2 ชนิด คือ คาร์บอนและแกรไฟต์ โดย แปรงถ่านชนิดที่ทำจากผงถ่านคาร์บอนบริสุทธิ์ จะเหมาะสำหรับใช้กับเครื่อง กำเนิดไฟฟ้าขนาดเล็ก ที่มีขนาดกำลังไฟใช้งานต่ำ ส่วนแปรงถ่านที่ผลิตจาก แกรไฟต์ ซึ่งเป็นการเพิ่มปริมาณความร้อนให้ผงถ่านคาร์บอนบริสุทธิ์จนเปลี่ยน สภาพเป็นแกรไฟต์ เป็นการเพิ่มคุณสมบัติให้แปรงถ่านดียิ่งขึ้น แปรงถ่านแกรไฟต์ จึงเหมาะสำหรับเครื่องกำเนิดไฟฟ้าที่มีขนาดกำลังไฟใช้งานสูง แต่มี Voltage ต่ำ โดยแปรงถ่านจะถูกยึดให้อยู่ในตำแหน่งที่เหมาะสมโดยชุดยึดแปรงถ่าน และจะ มีสปริงกดแปรงถ่านให้สัมผัสกับผิวหน้าคอมมิวเตเตอร์อยู่ตลอด ซึ่งด้านบนของ แปรงถ่านจะมีเส้นลวดทองแดงฝอยถักเชื่อมต่อระหว่างแปรงถ่านกับชุดยึดแปรงถ่าน อีกทั้งจะต้องติดตั้งชุดยึดแปรงถ่านกับแท่งตัวนำที่ยึดติดอยู่กับแขนร็อก (Rocker Arm) นอกจากนี้ปริมาณกระแสต่อพื้นที่แปรงถ่านนั้น จะขึ้นอยู่กับ ของแปรงถ่านที่ใช้ด้วย โดยแปรงถ่านคาร์บอนจะสามารถรับกระแสได้ประมาณ 4-7 แอมป์ต่อตารางเซนติเมตร ส่วนแปรงถ่านแกรไฟต์จะสามารถรับกระแสได้ ประมาณ 8-12 แอมป์ต่อตารางเมตร เช่นนั้น ในเครื่องกำเนิดไฟฟ้าที่มีขนาด กำลังไฟใช้งานสูง จะต้องเพิ่มจำนวนชุดแปรงถ่านในแต่ละแท่งตัวนำบนแขนของ ร็อกเกอร์ด้วย
แรงเคลื่อนไฟฟ้าของเครื่องกำเนิดไฟฟ้ากระแสตรงนั้น จะสร้างแรงเคลื่อนเอาต์พุตรูปคลื่นซายน์ขึ้น จากนั้นจึงจะถูกเปลี่ยนให้เป็นแรงเคลื่อนไฟกระแสตรงด้วยคอมมิวเตเตอร์
การเกิดแรงเคลื่อนไฟฟ้ารูปคลื่นซายน์ เมื่อขดลวดมีการเคลื่อนที่ครบ 1 รอบ จะได้รูปคลื่นซายน์ครบ 1 รูปพอดี โดยจะทำให้เกิดแรงเคลื่อนรูปซายน์ขึ้นในวงขดลวด และจะมีทิศทางแรงเคลื่อน ไฟฟ้าตามที่แสดงให้ในรูปด้านบน และกระบวนการนี้จะเกิดขึ้นซ้ำไปเรื่อยๆ ใน แต่ละรอบของการเคลื่อนที่
คอมมิวเตเตอร์ จะทำหน้าที่เปลี่ยนแรงเคลื่อนไฟสลับที่เกิดขึ้นภายในวงขดลวด ให้เป็นแรงเคลื่อนไฟตรง (DC) ซึ่งจะเชื่อมต่อระหว่างแปรงถ่านกับวงขดลวด โดยคอมมิวเตเตอร์มีบทบาทสำคัญในการเปลี่ยนไฟฟ้ากระแสสลับให้เป็นไฟฟ้ากระแสตรง ส่วนแปรงถ่านนั้น จะทำหน้าที่เชื่อมต่อแรงเคลื่อนของกองกำเนิดไฟฟ้าไปยังวงจรภายนอก โดยแปรงถ่านแต่ละอันจะต้องเชื่อมเข้ากับปลาย แต่ละข้างของวงขดลวด แต่ทั้งนี้แปรงถ่านไม่สามารถเชื่อมต่อเข้ากับวงขดลวดโดยตรง เนื่องจากวงขดลวดเป็นส่วนที่หมุนเคลื่อนที่ เช่นนั้น แปรงถ่านทั้งสองด้านจึงถูกต่อเชื่อมโยงเข้ากับปลายทั้งสองของวงขดลวด โดยผ่านคอมมิวเตเตอร์แทนลักษณะของคอมมิวเตเตอร์นั้น
นอกจากนี้การทำงานของคอมมิวเตเตอร์และแปรงถ่าน ที่ทำให้ได้แรงเคลื่อนเอาต์พุต ในขณะที่แปรงถ่านแต่ละอันผ่านจากซีกคอมมิวเตเตอร์หนึ่ง ไปอีกซีกหนึ่ง ช่วงระยะเวลาหนึ่งแปรงถ่านจะสัมผัสกับซีกทั้งสองของคอมมิวเตเตอร์พร้อมๆ กัน ทำให้เกิดแรงเคลื่อนไฟฟ้าจำนวนมาไหลในวงขดลวด ที่เป็นเช่นนี้เพราะปรงถ่านทั้งสองอันจะลัดวงจรปลายทั้งสองของวงขดลวดเข้าด้วยกันโดยตรง
เครื่องกำเนิดไฟฟ้ากระแสตรงชนิดกระตุ้นจากภายนอก จะมีหลักการอดไฟฟ้าโดยการได้รับกระแสไฟฟ้ากระตุ้นขดลวดสนามแม่เหล็กจากแหล่งไฟฟ้ากระแสตรงภายนอก ซึ่งต่อเข้าที่ขั้วของขดลวดสนามแม่เหล็ก ทั้งนี้ แหล่งจ่ายที่ใช้สำหรับเครื่องกำเนิดไฟฟ้ากระแสตรงคือแบตเตอรี่ หรือเครื่องกำเนิดไฟฟ้ากระแสตรงขนาดเล็ก จะมีตัวกระตุ้นการทำงานที่ติดอยู่กับตัวเครื่องกำเนิดไฟฟ้ากระแสตรงเรียกว่า เอ็กไซเตอร์ (Exciter)
เครื่องกำเนิดไฟฟ้ากระแสตรงชนิดกระตุ้นในตัวเอง มีหลักการโดยขดลวด สนามแม่เหล็กจะถูกกระตุ้นโดยอาศัยแรงดันไฟฟ้ากระแสตรง จากการเหนี่ยวนำ ของสนามแม่เหล็กที่ตกค้างภายในตัวเครื่องกำเนิดไฟฟ้าเอง เมื่ออาร์เมเจอร์หมุน ทำงาน จะเกิดแรงเคลื่อนไฟฟ้าเหนี่ยวนำขึ้นเล็กน้อย และจะเกิดกระแสไฟฟ้า เหนียวนำขึ้นเล็กน้อยเช่นกัน เช่นนั้น กระแสไฟฟ้าเล็กน้อยที่เกิดขึ้นนี้ จะไหลผ่าน ขดลวดสนามแม่เหล็กทำให้เกิดสนามแม่เหล็กขึ้น โดยสนามแม่เหล็กที่เกิดขึ้นนี้ จะช่วยเสริมสนามแม่เหล็กซึ่งตกค้างที่ขั้วแม่เหล็ก จึงทำให้สนามแม่เหล็กมีความ เข้มขึ้น ส่งผลให้เกิดการเหนี่ยวนำตามด้วยการเกิดแรงเคลื่อนไฟฟ้าเหนี่ยวนำเพิ่ม มากขึ้นเรื่อยๆ
ทั้งนี้ เครื่องกำเนิดไฟฟ้ากระแสตรงชนิดกระตุ้นในตัวเอง ยังสามารถแบ่ง ได้ตามลักษณะการต่อขดลวดสนามแม่เหล็กได้เป็น 3 แบบ โดยจะมีการเรียก ชื่อของเครื่องกำเนิดไฟฟ้ากระแสตรงแบบกระตุ้นภายในตัวเองในแต่ละแบบ จะ มีความสัมพันธ์สอดคล้องกับวิธีการต่อขดลวดสนามแม่เหล็กเข้ากับขดลวดอาร์
เครื่องกำเนิดไฟฟ้ากระแสตรงแบบขนาน (Shunt DC.Generator)
หลักการทำงานของเครื่องกำเนิดไฟฟ้ากระแสตรงชนิดกระตุ้นในตัวเอง แบบขนาน คือ เมื่อขดลวดสนามแม่เหล็กต่อขนานกับขดลวดอาร์เมเจอร์ และ เอาต์พุตของเครื่องกำเนิดไฟฟ้า เช่นนั้น จึงมีการเรียกเครื่องกำเนิดไฟฟ้ากระแส ตรงชนิดนี้ว่า เครื่องกำเนิดไฟฟ้ากระแสตรงแบบขนาน โดยค่าของกระแสไฟฟ้า กระตุ้นขดลวดสนามแม่เหล็กในเครื่องกำเนิดไฟฟ้ากระแสตรงแบบขนานจะขึ้น อยู่กับแรงดันไฟฟ้าเอาต์พุตและความต้านทานของขดลวดสนามแม่เหล็ก ซึ่งปกติ แล้วกระแสไฟฟ้าที่กระตุ้นขดลวดสนามแม่เหล็กจะถูกควบคุมให้มีค่าในระหว่าง 0.5-5 เปอร์เซ็นต์ของกระแสไฟฟ้าที่โหลด
เครื่องกำเนิดไฟฟ้ากระแสตรงแบบอนุกรม (Series DC Generator)
หลักการทำงานของเครื่องกำเนิดไฟฟ้ากระแสตรงชนิดกระตุ้นในตัว แบบอนุกรม คือ ขดลวดสนามแม่เหล็กต่ออนุกรมกับขดลวดอาร์เมเจอร์ และ เอาต์พุตของเครื่องกำเนิดไฟฟ้า เช่นนั้น จึงได้มีการเรียกชื่อเครื่องกำเนิดไฟฟ้า ชนิดนี้ว่า เครื่องกำเนิดไฟฟ้ากระแสตรงแบบอนุกรม กระแสไฟฟ้ากระตุ้นขดล สนามแม่เหล็กที่ไหลผ่านขดลวดสนามแม่เหล็กของเครื่องกำเนิดไฟฟ้าแบบนี้อยู่ เป็นค่าเดียวกันกับกระแสไฟฟ้าที่เครื่องกำเนิดไฟฟ้าจ่ายให้กับโหลด จึงทำให้เรา ดันไฟฟ้าเอาต์พุตมีค่าขึ้นอยู่กับกระแสไฟฟ้าที่ไหลผ่านโหลด
เครื่องกำเนิดไฟฟ้ากระแสตรงแบบผสม (Compound DC.Generator)
เครื่องกำเนิดไฟฟ้ากระแสตรงแบบผสม คือ การนำข้อดีของเครื่องกำเนิด ไฟฟ้ากระแสตรงแบบขนานและแบบอนุกรมมารวมอยู่ในเครื่องเดียวกัน กลาย เป็นเครื่องกำเนิดไฟฟ้าแบบผสม ซึ่งเป็นคุณสมบัติที่ดียิ่งขึ้น ทั้งนี้ จะสามารถแบ่ง ชนิดของเครื่องกำเนิดไฟฟ้ากระแสตรงแบบผสมตามลักษณะการต่อวงจรของขด ลวดสนามแม่เหล็กได้ 2 ลักษณะดังนี้
1. เครื่องกำเนิดไฟฟ้ากระแสตรงแบบผสมต่อแบบลองซันต์ (Long Shunt DC. Compound Generator) วงจรเครื่องกำเนิดไฟฟ้ากระแสตรงแบบผสมต่อแบบลองชันต์
2. เครื่องกำเนิดไฟฟ้ากระแสตรงแบบผสมต่อแบบชอร์ตชั้นต์ (Short Shunt DC. Compound Generator)
เครื่องกำเนิดไฟฟ้ากระแสสลับ หรือ Alternator สามารถผลิตไฟฟ้า กระแสสลับ โดยรับพลังงานกลจากต้นกำลังเพื่อหมุนขับเพลาของเครื่องกำเนิดไฟฟ้า ซึ่งหลักการทำงานโดยทั่วไปจะเหมือนกันกับเครื่องกำเนิดไฟฟ้ากระแส ตรง แต่จะมีความต่างกันในเรื่องของการตัดผ่านสนามแม่เหล็ก กล่าวคือ เครื่อง กำเนิดไฟฟ้ากระแสสลับ จะอาศัยหลักการตัวนำในอาร์เมเจอร์หมุนตัดสนามตำที่ขั้วแม่เหล็ก หรือสนามแม่เหล็กที่ขั้วแม่เหล็กหมุนตัดตัวนำในอาร์เมเจอร์ ส่วนเครื่องกำเนิดไฟฟ้ากระแสตรงนั้น ขดลวดอาร์เมเจอร์เป็นส่วนหมุนและขด ลวดสนามแม่เหล็กอยู่กับที่ นอกจากนี้เครื่องกำเนิดไฟฟ้ากระแสสลับนั้นสามารถ ทำให้ขดลวดอาร์เมเจอร์หมุนหรืออยู่ กับที่ก็ได้ ซึ่งจะขึ้นอยู่กับขนาดกำลัง ไฟใช้งานของเครื่องกำเนิดไฟฟ้า โดยปกติแล้วเครื่องกำเนิดไฟฟ้ากระแส สลับขนาดใหญ่ จะมีลักษณะการทำงานแบบสนามแม่เหล็กหมุน “ขั้ว แม่เหล็กหมุน” หรือ Rotating Field เพื่อให้ได้คุณสมบัติดังต่อไปนี้
โครงสเตเตอร์ (Stator Frame)
โครงสเตเตอร์ เป็นโครงโลหะ หุ้มภายนอกผลิตจากเหล็กหล่อ โดยโครงสเตเตอร์เป็นส่วนประกอบที่ รองรับส่วนประกอบอื่นๆ ของเครื่อง กำเนิดไฟฟ้า ซึ่งจะทำหน้าที่ยึดแกน เหล็กที่บรรจุขดลวดอาร์เมเจอร์ ทั้งนี้ ได้มีการออกแบบโครงสเตเตอร์ให้มี ช่องลมเพื่อช่วยในการระบายความร้อน
แกนเหล็กสเตเตอร์ (Stator Core)
แกนเหล็กสเตเตอร์ คือ ชิ้นส่วนที่ใช้พันขดลวดอาร์เมเจอร์ โดยแกนเหล็ก สเตเตอร์จะผลิตจากแผ่นเหล็กบางๆ วางอัดซ้อนกัน โดยเหตุผลที่จะต้องออกแบบ แกนเหล็กสเตเตอร์ให้มีลักษณะเช่นนี้ ก็เพื่อลดการสูญเสียเนื่องจากฮิสเตอรีซิส (Hysteresis Loss) หรือการสูญเสียของเส้นแรงแม่เหล็กที่ถูกสร้างขึ้นจากขดลวด ที่มีกระแสไหลวนในแกนเหล็ก (Eddy Current Loss) อีกทั้งแกนแผ่นเหล็กยัง เป็นเหล็กอ่อนบางซึ่งมีส่วนผสมของสารซิลิคอน เมื่อนำมาอัดซ้อนกันจะทำให้ได้ แกนเหล็กที่มีความแข็งแรงมากยิ่งขึ้น นอกจากนี้แผ่นเหล็กแต่ละแผ่นจะมีร่อง อากาศเพื่อระบายความร้อน โดยลักษณะของร่องแกนเหล็กสเตเตอร์จะมีอยู่ด้วย กัน 3 แบบ คือ
โรเตอร์ (Rotor)
ทุ่นหมุนซึ่งมีขดลวดฝังอยู่รอบแกนโรเตอร์ โดยโรเตอร์จะผลิต จากแผ่นซิลิคอนอัดแน่นเป็นชั้นพร้อมกับมีฉนวนกั้น เพื่อสร้างกระแสไฟฟ้าไหล วน ซึ่งกระแสไฟฟ้าจะได้มาจากเอ็กไซเตอร์ ทั้งนี้ โรเตอร์สามารถแบ่งออกได้เป็น 2 ชนิดด้วยกัน คือ
ขดลวดแดมเปอร์ (Damper Winding)
ขดลวดแดมเปอร์ จะมีลักษณะเป็นแท่งทองแดง ซึ่งฝังอยู่ที่บริเวณผิวด้าน หน้าของขั้วแม่เหล็กหมุน โดยจะต่อลัดวงจรเข้ากับวงแหวนทองแดงทั้งสองด้าน ของโรเตอร์ ทั้งนี้ขดลวดแดมเปอร์จะช่วยไม่ให้เกิดการสั่น หรือการแกว่ง เมื่อ ความเร็วรอบของเครื่องกำเนิดไฟฟ้าไม่สม่ำเสมอ
เอ็กไซเตอร์ (Exciter)
ชิ้นส่วนที่ทำหน้าที่ผลิตและจ่ายไฟฟ้ากระแสตรงให้กับขด ลวดสนามแม่เหล็กของเครื่องกำเนิดไฟฟ้ากระแสสลับ โดยเอ็กไซเตอร์จะถูกติดตั้ง ในตำแหน่งเพลาเดียวกันกับเครื่องกำเนิดไฟฟ้า ทั้งนี้เครื่องกำเนิดไฟฟ้าขนาดใหญ่ จะใช้เอ็กไซเตอร์แบบไร้แปลงถ่าน หรือ Brushless Generator เพื่อความสะดวก ในการบํารุงรักษาหากเทียบกับการใช้สลิปริงและแปรงถ่าน อีกทั้งระบบการ
กระตุ้นขดลวดสนามแม่เหล็กที่สมบูรณ์ ยังไม่จำเป็นต้องใช้แหล่งจ่ายไฟฟ้าจากภายนอกมากระตุ้น แต่จะใช่ไพล็อตเอ็กไซเตอร์ติดตั้งในตำแหน่งเพลาของฌรเตอร์ ซึ่งเป็นเครื่องกำเนิดไฟฟ้ากระแสสลับ 3 เฟส ขนาดเล็กที่มีขั้วแม่เหล็กหมุนเป็น บแม่เหล็กถาวร (Permanent Magnet)
TOOLTALKING คือพื้นที่ในการให้ความรู้เกี่ยวกับเครื่องมือต่างๆรวมไปถึงการ แก้ปัญหา การซ่อมแซม และ การรีวิวเครื่องมืออย่างตรงไปตรงมา เราคิดว่าการทำความเข้าใจเครื่องมือให้ถูกต้องก่อนการใช้งานจะนำประโยชน์มาให้กับทุกคน และเรายังเชื่อด้วยว่าเครื่องมือคือกระจกสะท้อนความก้าวหน้าของมนุษย์ หวังว่าทุกคนจะได้ประโยชน์จากพื้นที่เล็กๆแห่งนี้ที่เป็นพื้นที่สาธารณะที่สร้างไว้สำหรับทุกคน สุดท้ายหวังว่าทุกคนจะรักเครื่องมือเหมือนกับที่เรารัก ขอบคุณครับ "sirotmusic"